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SUMMARY 1 

Current diagnostic methods for diabetic nephropathy (DN) lack precision, especially in 2 

early stages and monitoring progression. This study aims to find potential biomarkers 3 

for DN progression and evaluate their accuracy. Using serum samples from healthy 4 

controls (NC), diabetic patients (DM), early-medium stage DN (DN-EM), and late-5 

stage DN (DN-L), researchers employed quantitative proteomics and Mfuzz clustering 6 

analysis revealed 15 proteins showing increased expression during DN progression, 7 

hinting at their biomarker potential. Combining Mfuzz clustering with weighted gene 8 

co-expression network analysis (WGCNA) highlighted five candidates (HMGB1, 9 

CD44, FBLN1, PTPRG, and ADAMTSL4). HMGB1 emerged as a promising 10 

biomarker, closely correlated with renal function changes. Experimental validation 11 

supported HMGB1’s upregulation under high glucose conditions, reinforcing its 12 

potential as an early detection biomarker for DN. This research advances DN 13 

understanding and identifies five potential biomarkers, notably HMGB1, as a 14 

promising early monitoring target. These findings set the stage for future clinical 15 

diagnostic applications in DN. 16 
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INTRODUCTION 1 

Diabetes mellitus (DM) is a chronic metabolic disease characterized by chronic 2 

hyperglycemia caused by impaired insulin secretion or utilization. Globally, over 415 3 

million people suffer from DM, and 693 million are expected to be diagnosed with it 4 

by 2045 1. Diabetes nephropathy (DN) is one of the major microvascular complications 5 

of DM, and approximately 30%-40% of patients with DM will develop DN 2. 6 

Unfortunately, the majority of DN patients progress without symptoms until they 7 

develop renal injury and then irreversible renal failure, which is treated only with 8 

kidney transplantation and dialysis. Besides posing a threat to patients’ lives, DN is 9 

also an enormous economic and medical burden on patients and society 3. To effectively 10 

prevent and treat DN, early diagnosis is therefore crucial. 11 

Renal biopsy is still the golden standard for diagnosing and typing DN. Nonetheless, 12 

this invasive approach has inherent limitations, such as the possibility of bleeding 13 

complications and the biases in its sampling 4. Therefore, the diagnosis of DN is 14 

increasingly being conducted using non-invasive surrogate techniques. Biomarkers can 15 

be used to identify people with diseases and redefine disease classifications 5,6. Classic 16 

markers for assessing the severity of DN include proteinuria, estimated glomerular 17 

filtration rate (eGFR), creatinine (Crea) and blood urea nitrogen (BUN) 7,8. These 18 

biomarkers accurately quantify the degree of renal injury in patients with DN, but they 19 

don’t have sufficient accuracy to discern the mild renal insufficiency of early DN. It is 20 

now widely accepted that albuminuria, a protein that is filtered through the glomerulus 21 

and then reabsorbed by the renal tubules, can monitor the development of DN 9. 22 

However, 20-40% of DM patients already have an eGFR decline before they are 23 

detected with albuminuria 10. Furthermore, the precise role of novel biomarkers such as 24 

microRNA (miRNA), long noncoding RNA (lncRNA), and urinary exosomes in DN 25 

still remains to be determined 11. Therefore, DN management requires non-invasive or 26 

minimally invasive methods that are more sensitive and selective for the detection of 27 

DN as well as monitoring the progression of DN. 28 
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Proteomics based on mass spectrometry (MS) is the technology of choice for analyzing 1 

proteins to discover potential disease‐related biomarkers 12,13. Serum contains 2 

numerous secreted proteins that play crucial roles in physiological and pathological 3 

changes 14. Therefore, comprehensive serum proteomics can be used to discover novel 4 

protein biomarkers for DN that may be obtained to learn more about pathophysiology 5 

and increase the accuracy of diagnostic stratification. Despite numerous studies 6 

exploring serum proteomics for potential DN biomarkers, the detection of only a 7 

limited number of proteins has been predominantly attributed to methodological 8 

limitations 15,16. Recent, studies involving the proteomics of serum for DN progression 9 

had previously been undertaken, but they were unable to distinguish DM from early 10 

DN 17. Moreover, many studies only focus on biomarkers in serum, while very few 11 

studies examine molecules identified through in vitro, cell-based or animal models. 12 

Thus, the biomarkers of DN progression based on serum proteomics need to be further 13 

explored. 14 

In this study, we investigated the serum proteome of early-medium stage and late stage 15 

DN patients compared with diabetic patients and healthy control subjects. Then, we 16 

clustered the associated biomarkers with a similar expressive variation trend, focusing 17 

on the cluster containing rise biomarkers along with DN development. With weighted 18 

gene co-expression network analyses (WGCNA) of all biomarkers, we explored which 19 

of the biomarkers was most relevant for DN progression and whether it was able to 20 

discriminate DN or not. We confirmed that the biomarker is elevated in both cell-based 21 

and animal models of high glucose. This study identifies a potential candidate 22 

biomarker to monitor the progression of DN patients and may be used in clinical 23 

practice. 24 

 25 

RESULTS 26 

Participant characteristics and assessment of the serum proteome analysis 27 
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A total of 96 patients, including healthy control (NC, male/female: 11/22), diabetic 1 

(DM, male/female:20/14), and diabetic nephropathy (DN, male/female: 16/13) were 2 

recruited. Upon enrollment for serum proteomic analysis, patients’ inclusion and 3 

exclusion criteria were reset. According to the estimated glomerular filtration rate 4 

(eGFR) categories in chronic kidney disease (CKD) by the Kidney Disease Improving 5 

Global Outcomes (KDIGO) 18, patients were further divided into four groups (Figure 6 

1A): healthy control (NC, eGFR ≥ 90 ml/min/1.73 m2), diabetic (DM, eGFR ≥ 90 7 

ml/min/1.73 m2), early medium stage (DN-EM, 30 ≤ eGFR < 90 ml/min/1.73 m2), and 8 

late stage (DN-L, eGFR ≤ 30 ml/min/1.73 m2), with 6 patients in each group. 9 

Demographic and clinical characteristics of the subjects are demonstrated in Table 1. 10 

The study included 12 females and 12 males, ages 40–80, and patients in the DN-EM 11 

and DN-L groups were older than the DM group; the observed distinction presented a 12 

statistically significant difference. No significant discrepancies were found in the 13 

gender and levels of uric acid between the four groups of participants. The blood 14 

glucose level in the DM, DNEM and DNL groups was significantly higher than that in 15 

NC group. In the DN-L group, serum creatinine and cystatin c levels were significantly 16 

elevated, and the blood urea nitrogen to serum creatinine ratio was significantly lower 17 

than in the NC and DM groups, while the level of blood urea nitrogen was significantly 18 

higher than in the NC, DM and DNEM groups. Meanwhile, the DN-L group had a 19 

significantly lower eGFR than the NC, DM and DNEM groups, and the DMEM group 20 

had a significantly lower eGFR than DM. 21 

Different protein levels in serum range over large orders of magnitude and are very 22 

heterogeneous compared to tissues or cellular samples. To obtain more comprehensive 23 

and useful proteins related to the DN pathogenesis, we filtered out the interference of 24 

high abundance proteins in serum. Subsequent, 1602 proteins were identified by 25 

LC/MS, of which 1402 proteins could be quantified (Figure 1B). It was consistent with 26 

the general rule based on enzymatic hydrolysis and mass spectrum fragmentation mode 27 

that most peptide segments were distributed in 7-20 amino acids, indicating that the 28 

distribution of peptide lengths identified by mass spectrum met quality control 29 
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standards (Figure 1C). In order to ensure the reliability of the serum samples and assay 1 

technique, and to confirm the statistical consistency of the quantitative outcomes, a 2 

comprehensive approach was undertaken. This involved the utilization of various 3 

methods, including Pearson’s Correlation Coefficient (PCC), principal component 4 

analysis (PCA), and assessment of Relative Standard Deviation (RSD). PCC analysis 5 

showed that there were high correlations between all specimens, with correlation 6 

coefficients generally higher than 0.9 (Figure 1D). Further analysis of these proteins by 7 

PCA demonstrated that the four groups could be successfully distinguished, particularly 8 

in the NC and DM groups, where reproducibility was high within each group (Figure 9 

1E). It is worth highlighting that the DN-EM and DN-L groups exhibited the most 10 

pronounced dissimilarity compared to the other stages. This suggests a substantial 11 

alteration in the protein expression profile during the DN stage. Quantitative 12 

repeatability of proteins in each group was acceptable as shown by the boxplot of RSD 13 

(Figure 1F). Based on quality control data, the samples exhibited high quality, and the 14 

accuracy of detection techniques indicates that any alterations observed in serum 15 

proteins may be associated with pathological disorders. 16 

Serum proteome profiling of patients with diabetic nephropathy 17 

Comprehensive view of proteomic changes related to DN pathogenesis, quantitative 18 

results of serum proteomics were performed differentially expressed proteins analysis 19 

(P < 0.05, FC > 1.5 and FC < 1/1.5). After pre-processing and missing value filtering, 20 

a total of 484 differential proteins were shown by the differential expressed proteins 21 

heatmap (Figure 2A). In the cluster heat map, most NC and DM groups had the same 22 

pattern of differentially expressed proteins, whereas the DN-EM and DN-L groups had 23 

the same pattern. In addition, we analyzed the volcano plots of pairwise comparisons 24 

between NC, DM, DN-EM and DN-L groups to visualize differentially expressed 25 

proteins (Figures 2B-2G). In the context of pairwise comparisons between groups, 26 

proteins exhibiting differential expression were visually represented as those that 27 

showed increased and decreased levels (Figure 2H). A closer look at the two DN groups 28 

had more differentially expressed proteins from the NC and DM groups, and that the 29 
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NC group in particular had the most differentially expressed proteins compared to DN-1 

EM and DN-L. Then, we selected all differentially expressed proteins from pairwise 2 

comparisons between groups and plotted UpSet plots of them, which hinted at 40 3 

common upregulated proteins and 23 common downregulated proteins in DN-EM 4 

versus NC, DN-L versus NC, DN-EM versus DM and DN-L versus DM (Figures 2I-5 

2J; black arrow). The list of 40 common upregulated and 23 downregulated 6 

differentially expressed proteins was showed in Supplementary Table S1-S2. 7 

Serum proteomics revealed the progression of diabetic nephropathy 8 

With serum proteomics, we performed the fuzzy c-means algorithm 19 to cluster the 9 

underlying protein determinants of DN progression and onset in circulation. It can 10 

cluster the associated protein expression patterns, and proteins in the same cluster 11 

display similar expressive variation trends. A total of 5 distinct clusters of temporal 12 

patterns representing different regulated proteins were observed (Figure 3). In these 13 

clusters, cluster 1 represents downregulated proteins, clusters 2 and 5 represent 14 

upregulated proteins, and clusters 3 and 4 represent bi-modally expressed proteins. In 15 

this study, we focused on proteins that are elevated during DN progression. An analysis 16 

of gene ontology (GO) of proteins in each cluster (Supplementary Figure S1) revealed 17 

that the upregulated proteins tend to perform a variety of functions, including 18 

extracellular matrix (ECM) structural constituent, cell adhesion molecule binding, 19 

ECM, endoplasmic reticulum lumen and biological adhesion (Cluster 2), presumably 20 

responsible for cell growth, polarity, shape, migration and metabolic activity in DN. 21 

KEGG pathway enriched proteomics in Cluster 2 are mainly associated with protein 22 

digestion and absorption, PI3K-Akt signaling pathway, human papillomavirus 23 

infection, ECM-receptor interaction and protein processing in endoplasmic reticulum 24 

(Figure 3 and Supplementary Figure S2). 25 

For reliable DN diagnostic indicators, we set the membership of cluster, the relative 26 

standard deviation within groups, and the number of unique peptides in cluster 2. A 27 

total of 16 peptides were eligible and derived from different 15 proteins, including 28 

ADAMDEC1, ADAMTSL4, AMBP, APOA4, AZGP1, CD44, COL18A1, COL6A3, 29 
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EEA1, FBLN1, FBN1, HMGB1, MAN1A1, OAF and PTPRG (Supplementary Table 1 

S3). Each peptide’s expression levels across all four groups were compared (Figure 4A), 2 

and the panel of FBLN1, AZGP1, CD44, ADAMDEC1, ADAMTSL4 and HMGB1 3 

showed significant differences (P < 0.001). To investigate the mechanism of DN 4 

progression, PPI network data were constructed by inputting 15 proteins into the 5 

STRING Database, then uploaded into Cytoscape, and selected the top 21 core proteins 6 

using the Cytohubba plug-in, based on descending degrees (Figure 4B). Based on the 7 

highest scores, CD44, HMGB1 and AMBP may play a crucial role in DN progression. 8 

These 15 proteins were also subjected to enrichment analysis for GO and KEGG, whose 9 

functions are mainly related to ECM structure and receptor interaction, and ECM 10 

deposition plays an important role in DN development (Figure 4C). 11 

High mobility group protein B1 is a biomarker for monitoring diabetic 12 

nephropathy 13 

Analysis of co-expression networks serves as a valuable tool in unraveling the intricate 14 

changes characteristic of DN. This is particularly essential because the emergence of 15 

DN phenotypes stems from the amalgamation of numerous and gradual alterations in 16 

the deregulated expression of multiple proteins, rather than the isolated deregulation of 17 

individual proteins. 20. Co-expression network analysis was conducted using all 18 

proteins with the weighted gene co-expression network analysis (WGCNA) approach 19 

21. Soft thresholding power (β = 8; cut‐off = 0.85) with increased adjacency was used 20 

to create a weighted gene network (Supplementary Figure S3), resulting in five distinct 21 

modules of different colors (Figure 5A). Initial visualization of the Topological Overlap 22 

Matrix (TOM) of proteins after DN was performed using a heatmap plot with various 23 

module assignments and protein dendrograms (Figure 5B). Based on this, the module-24 

trait relationship between the module eigengene E and the trait DN were then 25 

investigated, the DN group contains all of the proteins from the DM, DN-EM and DN-26 

L groups (Figure 5C). Interestingly, only blue module is most significantly correlated 27 

both with the trait NC (cor = 0.51 and P = 0.01) and DN (cor = 0.45 and P = 0.03). 28 

Finally, we explored the overlap of proteins in blue module and cluster 2 with a Venn 29 
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diagram (Figure 5D). The overlapping proteins (HMGB1, CD44, FBLN1, PTPRG and 1 

ADAMTSL4) were display in Table 2 with their relevance scores of DN, which are 2 

obtained from the Genecards database. 3 

In our analysis, our research indicates a significant connection between the serum 4 

protein High mobility group protein B1 (HMGB1) and the development of DN. We 5 

tested HMGB1’s ability to discriminate between patients who developed DN and those 6 

who did not. Based on ROC curve analysis, we found that HMGB1 was a good marker 7 

for distinguishing DN-EM versus NC (AUC of ROC = 0.917), DN-L versus NC (AUC 8 

of ROC = 1.000), DN-EM versus DM (AUC of ROC = 0.889) and DN-L versus DM 9 

(AUC of ROC = 1.000) (Figure 6A). Furthermore, intensity of HMGB1 was inversely 10 

related to eGFR (Pearson’s R = -0.787 and P < 0.001) and the blood urea nitrogen to 11 

serum creatinine ratio (Pearson’s R = -0.631 and P < 0.001). Meanwhile, intensity of 12 

HMGB1 was positively correlated blood urea nitrogen (Pearson’s R = 0.646 and 13 

P < 0.001), serum creatinine (Pearson’s R = 0.688 and P < 0.001) and cystatin c 14 

(Pearson’s R  = 0.661 and P < 0.001) (Figures 6B-6F). These findings suggest that 15 

HMGB1, particularly when it comes to individuals in the early and advanced stages of 16 

DN, may accurately monitor the status of the disease. 17 

Investigation of high mobility group protein B1 in diabetic nephropathy model 18 

Although serum proteome profiling method does not require that specific protein 19 

epitopes be detected, further research is needed to determine if their biological response 20 

can be applied across species and sources. Injection of streptozotocin (STZ) can 21 

generate well-established diabetic mouse models, and these can commonly be used to 22 

study the pathogenesis of DN. We took advantage of a diabetic mice to determine the 23 

role of HMGB1 on improving the development of DN. Diabetic mice at 28 weeks with 24 

severe pathophysiologic alterations observed in the kidney compared to diabetic mice 25 

at 20 weeks. As diabetes progressed, the renal tissues showed increasing damage, 26 

collagen deposition, and irregular thickening of the basement membrane, indicating 27 

that the diabetic mouse model was feasible (Figure 7A). Compared to the control group, 28 

mice injected with STZ at 20 and 28 weeks had significantly higher blood glucose 29 
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 10 

levels (Figure 7B), and most importantly, their serum creatinine (Figure 7C), urea 1 

nitrogen (Figure 7D) and urinary microalbumin to creatinine ratio (ACR; Figure 7E) 2 

levels, which reflect the change in kidney function, increased gradually with diabetes. 3 

HMGB1, a biomarker we identified as being linked to DN in human serum, also 4 

displayed a noteworthy upregulation as diabetic mice progressed through renal tissues. 5 

Immunofluorescence (Figure 7F) and Western blot analysis (Figure 7G) revealed that 6 

the kidney tissues of diabetic mice with renal injury have higher levels of HMGB1, and 7 

that this level increases with the duration of diabetes. Interestingly, the expression of 8 

HMGB1 in the kidney tissues of control mice increased with age, although it was not 9 

statistically significant (Figure 7G). Additionally, an in vitro model of DN renal tubular 10 

epithelial cells (HK2 cells) was established. A time-dependent culture of HK2 cells in 11 

high-glucose medium (30 mM) increased HMGB1 protein level at 36 hours as 12 

epithelial-mesenchymal transition (EMT) changes intensified (Figure 7H). Observing 13 

treated HK2 cells for HMGB1 expression by immunofluorescence showed increased 14 

expression of HMGB1 in the nucleus and cytoplasm after high-glucose-stimulated HK2 15 

cells (Figure 7I). Our data implicate that HMGB1 is a newly identified marker that we 16 

can evaluate as a potential marker to monitor the progress of DN. 17 

 18 

DISCUSSION 19 

In this study, comprehensive quantitative proteomics on serum from four independent 20 

cohorts was conducted to determine biomarkers of DN progression. First, we quantified 21 

thousands of proteins with discovery mass spectrometry without prior knowledge, 22 

which allowed us to identify proteins not previously associated with DN. After protein 23 

relative quantification between NC, DM, DN-EM and DN-L patients the elevated 24 

expressive variation trend of a total of 15 proteins was further identified in DN 25 

progression by Mfuzz clustering analysis. We further identified five proteins from 26 

overlapping analysis between rising cluster 2 and WGCNA, which were measured to 27 

discriminate between patients who developed DN and those who did not. Based on the 28 
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results, we explored Genecard’s database of DN scores and found that HMGB1 was the 1 

priority biomarker in the development of DN and was tested in both cell and animal 2 

models of high glucose. 3 

Although proteomics can be utilized in treating many diseases 22, early diagnosis of DN 4 

by proteomics has been a challenge 23. Several studies have shown that profiling urinary 5 

proteomics can identify novel biomarkers for DN 24,25. Nevertheless, few trials have 6 

been conducted to assess the monitoring value of blood for the course of DN, especially 7 

the early diagnosis of DN 16,17. In early DN diagnosis, proteomics may be limited due 8 

to vast heterogeneity and widespread protein abundance in blood, as well as strong 9 

proteolytic activity, which can muddle interpretation of the blood proteome 26. In our 10 

study, we filtered out the high abundance of interfering signals using Field-Asymmetric 11 

Ion Mobility Spectrometry (FAIMS), which can selectively identify compounds in a 12 

complex background, and detect more key proteins in blood 27. 1602 proteins were 13 

identified by filtering out the high abundance of proteins, of which 1402 could be 14 

quantified (Figure 1B). Based on the disease course, PCA analysis of 1402 quantified 15 

proteins and heat map analysis of 484 differentially expressed proteins showed 16 

significant protein expression changes in the serum of patients in the DN stage (Figure 17 

1E, 2A), indicating the various molecular alterations induced by DN also affect the 18 

expression in serum, especially early stages 28. Although the serum proteome changed 19 

much less both in NC versus DM and DN-EM versus DN-L, the cohort with early DN 20 

had clearer differences than the DM cohort, which facilitated finding biomarkers for 21 

early DN (Figure 2H). 22 

Variations in eGFRs are known to monitor DN progression, but compensatory changes 23 

in the remaining nephrons might overestimate or underestimate the true GFR in the 24 

condition 29. In the present work, we group 4 cohorts: healthy, diabetic, early medium 25 

stage, and late stage of DN, to gain a better understanding of serum protein alterations 26 

during DN progression. On the basis of this category, we cluster the associated proteins 27 

with similar expressive variation trends in DN progression (Figure 3). In Cluster 2, 28 

proteomics has increased along with DN progression, and proteins with high expression 29 
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are generally more detectable. In KEGG pathway enriched proteomics of Cluster 2 1 

(Figure 3 and Supplementary Figure S2), one of the most prominent signaling pathways 2 

was the PI3K-AKT pathway, consistent with previous studies demonstrating that PI3K-3 

AKT signaling is implicated in DN 30,31. Similar to our result, PI3K/Akt signaling 4 

contributes to ECM accumulation, which promotes the progression of renal interstitial 5 

fibrosis in DM 32,33. To differentiate early DN from DM, we further refined screening 6 

biomarkers. Overall, 15 biomarkers strongly associated with DN progression were 7 

screened in Cluster 2 and mainly related to ECM structure and receptor interaction. In 8 

DN progression, ECM proteins are frequently deposited in the mesangium and renal 9 

tubule interstices of the glomerulus and basement membranes of patients with DN 34.  10 

Because DN progression involves multiple factors and has a complex proteins 11 

alteration 35, a comprehensive analysis of multiple deregulated proteins is needed to 12 

monitor DN progression 36. Thus, using WGCAN and Mfuzz, we obtain 5 biomarkers 13 

(HMGB1, CD44, FBLN1, PTPRG and ADAMTSL4) that were highly correlated with 14 

DN progression (Figure 5). Among the 5 candidate biomarkers, HMGB1, the most 15 

promising biomarker relevant to DN, has been verified in both cell and animal models 16 

of high glucose (Figure 7). A nonhistone protein HMGB1 is mainly located inside the 17 

nucleus of a cell 37. When the cell is stimulated by various kinds of damage, it releases 18 

itself into the extracellular space as a damage-associated molecular pattern (DAMP) 19 

molecule that participates in inflammatory responses, differentiation and migration of 20 

cells 38,39. HMGB1, as a pathogenic factor in DN, interacts with TLRs and RAGE, 21 

which are its receptors on the cytomembrane, activating innate immune responses by 22 

promoting nuclear translocation of transcription factors 40-42. Interestingly, high levels 23 

of HMGB1 in serum from patients with DN can induce podocyte autophagy, apoptosis, 24 

and EMT 43. We speculate that after persistent high glucose stimulation in DN, HMGB1 25 

may be released from the nucleus into the extracellular space, triggering positive 26 

feedback through TLRs and RAGE receptors that further exacerbates renal fibrotic 27 

factors. However, in order to understand the detailed mechanism, further investigation 28 

is required. In addition, studies have shown that HMGB1 is elevated both in DN 29 
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patients’ kidney tissues and in those from DN mice, which is consistent with our 1 

findings 44 (Figure 7G). In addition to the HMGB1 mentioned above, CD44 is a cell 2 

adhesion molecule, and its ligands are various ECM components 45,46. CD44 regulates 3 

the expression of ECM derived from parietal epithelial cells (PEC) and podocytes in 4 

DN 47. Another candidate biomarker, FBLN1, is a secreted glycoprotein that interacts 5 

with ECM proteins to maintain ECM integrity 48. Exosomal FBLN1 promotes DN 6 

progression through inducing EMT in the proximal renal tubules 49. Patients with CKD 7 

and T2DM showed an increased risk of cardiovascular events when their circulating 8 

FBLN1 levels were elevated 50. The remaining two biomarkers, PTPRG and 9 

ADAMTSL4, have not been associated with DN, similar to what we found in our results. 10 

Nevertheless, to determine whether these proteins are diagnostic biomarkers for DN 11 

progression, additional large-scale investigations are needed. 12 

Our research showed that HMGB1 was highly correlated with several renal function 13 

indicators (Figures 6B-6F) and could be a good marker for the early detection of DN, 14 

especially distinguishing healthy control and DN patients (Figure 6A). Based on our 15 

results, HMGB1 may be identified as a potential novel biomarker for DN progression. 16 

Of course, as a single biomarker, HMGB1 also has limitations. As the age confounder 17 

factor could not be excluded in DN patients (Table S4; β=8552.354, P=0.011), the 18 

expression of HMGB1 in the kidney tissues of control mice increased with age, which 19 

hinted that the elevation of HMGB1 may be related to age factors (Figure 7G). 20 

Furthermore, HMGB1 proteins could serve as a potential non-invasive biomarker for 21 

several inflammation-related diseases or tumors51-53. Inflammation is also crucial to DN 22 

progression54, which seems that HMGB1 might serve as a general biomarker of early 23 

inflammation. By combining other biomarkers, the monitoring accuracy of HMGB1 in 24 

DN progression might improve. Intriguingly, a candidate biomarker in our study is 25 

CD44, which is increased by extracellular HMGB1 in tumor progression55. However, 26 

it’s not clarified whether HMGB1 and CD44 can be combined to monitor DN 27 

progression, and whether HMGB1 increases CD44 to regulate it. Thus, further clinical 28 
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sample prediction models and mechanism studies are urgently needed to clarify the role 1 

of HMGB1 as a potential biomarker for early DN progression. 2 

A novel aspect of this study is that, based on the stages of DN patients and clustering 3 

analyses of proteins with similar altered trends in progression, we were able to identify 4 

biomarkers in serum that can reflect DN progression more accurately. A validated 5 

biological response of HMGB1 was found across species and sources, making it a 6 

reliable biomarker for DN progression, but clinical translation needs more exploration. 7 

In conclusion, we investigated the proteomes of patients with DM or different stages of 8 

DN and healthy control by quantitative proteomics to gain an understanding of serum 9 

protein alterations during DN progression. Five promising biomarkers, HMGB1, CD44, 10 

FBLN1, PTPRG and ADAMTSL4, allowed monitoring of the progression of DN, 11 

whereas HMGB1 was highly correlated with renal function alterations and could be an 12 

appropriate marker for the early detection of DN, especially distinguishing healthy 13 

controls and DN patients. Although there is insufficient evidence to conclude that these 14 

biomarkers can replace invasive diagnostics for DN, with further research, these 15 

proteomics changes may help clinicians identify DN in the early stages. 16 

 17 

LIMITATIONS OF THE STUDY 18 

Despite our findings, this study has several limitations. First, as this study only involves 19 

a small number of patients, it is necessary to validate the results with additional patients 20 

within each cohort. Statistics show significant differences in all results, and with 21 

increased sample size, the difference in HMGB1 elevation in serum of DN patients may 22 

increase. Second, there were not enough clinical data collected in this retrospective 23 

study, so no adjustments for clinical covariates or pathological confounders were made. 24 

Third, the HMGB1 is an inflammation-associated molecule, and many 25 

proinflammatory factors must be considered before it can be used as a biomarker for 26 

DN. Thus, more research cohorts with DN are needed to validate the biomarker. Fourth, 27 

the findings from our study were limited to a single hospital, which may limit their 28 
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 15 

generalizability. Finally, non-diabetic chronic kidney disease was not profiled for 1 

serum proteomics, so we cannot infer that the serum protein alterations in DN are 2 

exclusively due to diabetes. 3 
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Figure legends 1 

Figure 1. Design and quality control of serum proteomics in DN.  2 

(A) Overview of the study structure and cohort particulars: In total, 96 participants from 3 

healthy control, diabetic, and diabetic nephropathy were recruited and further divided 4 

into four groups, including healthy control (NC), diabetic (DM), early medium stage 5 

(DN-EM), and late stage (DN-L), with 6 patients in each group to perform liquid 6 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis. 7 

(B) Overview of the number of proteins identified by LC-MS/MS analysis. 8 

(C) Distribution of identifiable peptide lengths from LC-MS/MS analysis. 9 

(D) Pearson’s Correlation Coefficient (PCC) analysis from the proteomics data in NC, 10 

DM, DN-EM, and DN-L groups. Color saturation in red and blue indicates a degree of 11 

correlation present among the samples. 12 

(E) Principal component analysis (PCA) from the proteomics data shows 13 

discrimination between NC (gray), DM (yellow), DN-EM (blue), and DN-L (red) 14 

groups. Each dot represents a single sample. 15 

(F) Relative Standard Deviation (RSD) from the proteomics data shows intra-group 16 

data repeatability in NC (gray), DM (yellow), DN-EM (blue), and DN-L (red) groups. 17 

Figure 2. Serum proteome profiling of patients with DN 18 

(A) Heatmap of differential expressed proteins (DEPs) from the proteomics data in NC, 19 

DM, DN-EM, and DN-L groups. Red: upregulated proteins; blue: downregulated 20 

proteins. 21 

(B-G) Volcano plots of DEPs from the proteomics data for each pairwise comparison 22 

(P < 0.05, FC > 1.5 and FC < 1/1.5). Gray: proteins that are not significantly deregulated; 23 

red: upregulated proteins; blue: downregulated proteins. 24 

(H) Overview of the increased and decreased DEPs from the proteomics data for each 25 

pairwise comparison. Red: upregulated proteins; blue: downregulated proteins. 26 
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(I-J) UpSet plots show the intersections between DEPs from the proteomics data for 1 

each pairwise comparison (red sets, upregulated proteins; blue sets, downregulated 2 

proteins). Circles connected to the intersection indicate which DEPs are included in the 3 

intersection, and the size of the intersection is displayed in the main bar (right bars). 4 

Figure 3. Mufzz analysis reveals different expression patterns of proteins in DN 5 

Progression 6 

A protein expression line graph is shown on the left, a heat map is shown in the middle, 7 

and the top 2 enrichment analysis entries are shown on the right. Line graph: the 8 

horizontal axis represents the sample, the vertical axis depicts the relative protein 9 

expression, a line represents a protein, and the color of the line indicates the affiliation 10 

intensity in the cluster. Heatmap: the horizontal axis represents the sample, the vertical 11 

axis depicts different proteins, and the heatmap color indicates the relative expression 12 

of the protein in the sample. Domain enrichment is red, Gene Ontology Biological 13 

Process (GO-BP) enrichment is blue, Gene Ontology Cellular Component (GO-CC) 14 

enrichment is green, Gene Ontology Molecular Function (GO-MF) enrichment is 15 

purple, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment is orange. 16 

Figure 4. A panel of proteins strongly associated with DN progression 17 

(A) Box‐and‐whisker plot to visually represent the dispersion of LFQ intensity values 18 

for APOA4, FBLN1, OAF, MAN1A1, AZGP1, EEA1, PTPRG, FBN1, CD44, 19 

ADAMDEC1, ADAMTSL4, COL18A1, COL6A3, AMBP and HMGB1 in serum. NC 20 

is gray, DM is yellow, DN-EM is blue, DN-L is red. A median line is shown in the 21 

middle of the box, the top and bottom represent the upper and lower quartiles, and 22 

whiskers indicate the upper and lower limits for outliers. *P < 0.05, **P < 0.01, ***P 23 

< 0.001, ****P < 0.0001 by multiple comparison. 24 

(B) PPI network showing the interactions of the 15 proteins (shown in Figure 4A) based 25 

on STRING. The darker the node, the more core the interaction. 26 

(C) Gene enrichment analysis (BP: GO-BP, CC: GO-CC, MM: GO-MF, KEGG) of 15 27 

proteins (shown in Figure 4A). The horizontal axis represents the ratio of proteins, the 28 
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vertical axis represents enrichment analysis entries, the color shades represent adjust P-1 

values, and the circle size represents the protein number. 2 

Figure 5. Novel biomarkers associated with DN progression achieved by WGCNA 3 

(A) Cluster dendrogram of the topological overlap between proteins. Highly similar 4 

modules are delineated by hierarchical clustering dendrograms and assigned arbitrary 5 

colors to each module below. 6 

(B) The dendrogram and network heatmap plot of the topological overlap between 7 

proteins. A module membership, color-coded for easy identification, is displayed below 8 

and to the right of the dendrograms. The color saturation in yellow and red indicates a 9 

greater degree of interconnection between co-expressions. 10 

(C) Heatmap of the module-trait relationship between the module eigengene E and the 11 

trait DN. An eigengene corresponds to each row, and a trait to each column. 12 

(D) Venn diagram of DEPs in the blue module and 15 proteins (shown in Figure 4A) 13 

from cluster 2. 14 

Figure 6. The diagnosis values of HMGB1 in DN progression 15 

(A) Receiver-operating characteristic (ROC) curve of HMGB1 for each pairwise 16 

comparison. AUC, area under the ROC curve. AUC has low diagnostic accuracy at 0.5 17 

to 0.7, certain diagnostic accuracy at 0.7 to 0.9, and high diagnostic accuracy at 0.9 or 18 

more. 19 

(B-F) Pearson correlation between intensity of HMGB1 and eGFR, blood urea nitrogen 20 

to serum creatinine ratio (BUN/Scr), blood urea nitrogen, serum creatinine, and cystatin 21 

c, respectively. R > 0 represents positively correlated, and R <  0 represents inversely 22 

correlated. 23 

Figure 7. Validation of HMGB1 in DN model 24 

(A) Hematoxylin and eosin staining (HE), masson trichrome staining, and periodic 25 

acid-schiff staining (PAS) staining show typical DN changes in diabetic mice; scale 26 
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bars = 50 μm; inflammatory cell infiltration (yellow arrow), collagen deposition (black 1 

arrow), and irregular thickening of the glomerular basement membrane (red arrow) and 2 

glomerular capsule (green arrow). NC20W and NC28W is normal mice at 20 and 28 3 

weeks, DM20W and DM28W is diabetic mice at 20 and 28 weeks. 4 

(B-E) Blood glucose, serum creatinine, and blood urea nitrogen levels and urine 5 

albumin to creatinine ratio of normal mice (blue) and diabetic mice (red).  6 

(F) Immunofluorescence staining for HMGB1 (red) and lotus tetragonolobus lectin 7 

(LTL, green, the marker of renal tubular brush brush) in the kidney tissues of mice; 8 

scale bars = 50 μm. 9 

(G) In the analysis of kidney tissue from mice, Western blotting was utilized to ascertain 10 

the expression levels of HMGB1 as well as proteins associated with epithelial-11 

mesenchymal transition (EMT); quantification of relative levels of protein expression. 12 

(H) Western blotting was employed to assess the expression of HMGB1 and proteins 13 

indicative of EMT in HK2 cells stimulated with high glucose.  14 

(I) Immunofluorescence staining for β-actin (red) and HMGB1 (green) in high-glucose-15 

stimulated HK2 cells; white arrow is cytoplasm; scale bars = 20 μm.  16 

All experiments are performed three times and data were expressed as mean ± standard 17 

deviation (SD). *P<0.05, **P<0.01 and ***P<0.001 by Student’s t-test. 18 
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STAR METHODS 1 

KEY RESOURCES TABLE 2 

RESOURCE AVAILABILITY 3 

Lead contact 4 

For additional details and inquiries regarding resources and reagents, please contact the 5 

primary point of contact, Lirong Liu (Email: lirongliu@gmc.edu.cn). 6 

Materials availability 7 

In this study, no novel reagents were developed. 8 

Data and code availability 9 

 The mass spectrometry proteomics data have been deposited to the 10 

ProteomeXchange Consortium via the PRIDE 56 partner repository with the dataset 11 

identifier PXD047872. 12 

 This paper does not report original code. 13 

 Any additional information required to reanalyze the data reported in this paper is 14 

available from the lead contact upon request. 15 

 16 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 17 

Clinical Samples 18 

The study population was all Han Chinese, comprising healthy control (NC, n=33, 19 

54.67±18.24 years, male: 10, female: 23), diabetic (DM, n=34, 57.03±16.07 years, male: 20 

20, female: 14), and diabetic nephropathy (DN, n=29, 62.10±10.69 years, male: 16, 21 

female: 13) patients enrolled from July 2021 to January 2022 at the Affiliated Hospital 22 

of Guizhou Medical University. In accordance with the Declaration of Helsinki 1975, 23 

this study was approved by the Ethics Committees of the Affiliated Hospital of Guizhou 24 
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Medical University (Ethics Approval No.2023398). Consent forms have been signed 1 

by all participants for the extra samples to be used for academic research. 2 

Inclusion and Exclusion criteria 3 

Inclusion criteria include (1) all patients except the NC group fulfilling the diagnostic 4 

criteria of DM; (2) for NC and DM group, eGFR ≥ 90 ml/min/1.73 m2 without kidney 5 

disease; (3) for DN group, with kidney disease and diabetic retinopathy, eGFR less than 6 

90 ml/min/1.73 m2.  7 

Exclusion criteria include (1) other urinary diseases as hereditary kidney disease, 8 

urinary tract infection, stones or obstruction; (2) systemic diseases, atherosclerosis, 9 

severe hypertension, thrombotic microangiopathy, active or chronic infectious diseases; 10 

(3) complication of serious diseases as well as a tumor; (4) pregnant woman. 11 

Animals and procedures 12 

We sourced male C57BL/6 mice (6–8 weeks old) bred under specific pathogen-free 13 

(SPF) conditions from Charles River Co. Ltd (Beijing, China). All mice were randomly 14 

grouped (n=3), and DM mice were injected with STZ (Solarbio, S8050) through the 15 

intraperitoneal at a dose of 55 mg/kg/day, while NC mice received solvent injections 16 

of the same volume. Experiments were conducted on mice with random blood glucose 17 

≥ 16.7 mmol/L and positive urine glucose. At 20 and 28 weeks, mice were killed, then 18 

kidney tissues, blood and urine were collected. All animal experiments were approved 19 

by China’s National Health and Medical Research Council’s Code for the Care (No. 20 

1800353). 21 

Cell culture 22 

Human renal proximal tubule epithelial cells (HK2) were cultured in Dulbecco’s 23 

modified Eagle’s/F12 medium (DMEM/F12, 1:1) under standard conditions of 37°C 24 

and 5% CO2. All mediums were supplemented with 10% fetal bovine serum (Gibco-25 

BRL) and 1% penicillin/streptomycin. HK2 cells were cultured with 30 mM D-glucose 26 

(HG; Solarbio, G8150) mediums at different time point57. 27 
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METHOD DETAILS 1 

Sample collection and proteomics assays 2 

Serum samples from fasting blood were collected by centrifugation at 3500 rpm for 10 3 

min at room temperature and stored at − 80 °C until assayed. The cell debris was 4 

removed by centrifuged at 12000 g for 10 min at 4 °C, then depleted of high-abundance 5 

proteins using the Pierce™ Top 12 Abundant Protein Depletion Spin Columns Kit 6 

(Thermo Fisher Scientific, 85164) according to the manufacturer’s instructions. Protein 7 

concentration was determined using BCA kit (Beyotime, P0011).  8 

An equivalent quantity of protein was utilized for enzymatic hydrolysis in every sample. 9 

The volume was standardized, and subsequently, dithiothreitol (DTT) was introduced 10 

to achieve a final concentration of 5 mM. This mixture was then subjected to reduction 11 

at 56°C for a duration of 30 minutes. Subsequent to that, iodoacetamide (IAA) was 12 

incorporated to attain a final concentration of 11 mM. This concoction was left to 13 

incubate in darkness for a duration of 15 minutes at room temperature. Afterward, the 14 

samples were carefully transferred into ultrafiltration tubes and subjected to 15 

centrifugation at 12000 g for a span of 20 minutes, all at room temperature. Following 16 

this centrifugation step, the samples underwent a thorough washing process, involving 17 

three successive washes with 8M urea, followed by an additional three rounds of 18 

washing with the replacement buffer. In the final step, trypsin was incorporated at a 19 

proportion of 1:50 (trypsin to protein, m/m) to facilitate an overnight digestion process. 20 

Following centrifugation at 12000 g for a duration of 10 minutes at room temperature 21 

to recover the peptides, they were also recovered using ultrapure water once and then 22 

mixed together. 23 

For the examination of serum samples, a liquid chromatography-tandem mass 24 

spectrometry (LC-MS/MS) approach was employed. This involved utilizing an 25 

Orbitrap Exploris™ 480 mass spectrometer (Thermo Fisher Scientific) in tandem with 26 

an EASY-nLC 1200 Ultra high-performance liquid phase system (UHPLC, Thermo 27 

Fisher Scientific). The mass spectrometry was used to analyze the ionized peptides after 28 
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they had been separated by the UHPLC and introduced into the NSI ion source for 1 

ionization. Mass spectrometry was set for primary scan range of 400-1200 m/z, at 2 

60000 resolution; secondary scan range of 100 m/z, at 30000 resolution, without 3 

TurboTMT. Data-dependent scanning (DDA) software was utilized in the data 4 

collecting mode. Automatic gain control (AGC) was set to 75% to maximize the 5 

effective use of the mass spectrum. The signal threshold was defined at 1E4 ions/s, with 6 

a maximum injection time of 100ms. Additionally, a dynamic exclusion time of 30s 7 

was applied to tandem mass spectrometry scans to ensure avoidance of duplicate 8 

scanning for parent ions. The service of proteomics assays was provided by PTM 9 

Biolabs, Inc. 10 

Proteomics Data Analysis 11 

Each protein was subjected to a two-sample t-test for each pairwise comparison across 12 

the four groups. Absolute log2 (fold change) > 1.5 or < 1/1.5 and a P-value < 0.05 were 13 

used to designate differentially expressed (DE) proteins. Following log2 ratio 14 

transformation, the relative protein expression was screened by a standard deviation 15 

(SD) > 0.3. The 828 proteins remained, and Mfuzz clustering analysis was used to 16 

separate proteins in the same cluster with similar expression trends into five clusters. 17 

The most relevant peptides from the cluster2 group (n = 16) were selected after setting 18 

unique peptides ≥ 2, membership of cluster2 ≥ 0.4, relative standard deviation (RSD) ≤ 19 

0.4, and a P-value < 0.05 among samples. The examination of the protein-protein 20 

interaction (PPI) network involved the utilization of the Search Tool for the Retrieval 21 

of Interacting Genes (STRING; http://string-db.org). Cytoscape software (version 3.9.1) 22 

was used to construct a PPI network from an interaction with a combined score of more 23 

than 0.4. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) 24 

enrichment analysis and Weighted Gene Co-Expression Network Analysis (WGCNA) 25 

were performed using R software (version 4.2.1). For WGCNA, soft thresholding 26 

power (β = 8; cut‐off = 0.85) was chosen to increase the adjacency matrix, which was 27 

converted into a topological overlap matrix. The minModuleSize was set to 50 to 28 

hierarchically cluster the modules, and then DN related modules were merged. The 29 
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relevance scores of DN were searched from the Genecards database 1 

(https://www.genecards.org/). 2 

Receiver operating characteristic (ROC) and correlation analysis 3 

The diagnostic sensitivity and specificity of HMGB1, along with the correlation 4 

between HMGB1 and clinical diagnostic indicators, were examined using R software 5 

(version 4.2.1). With R packages "pROC", receiver operator characteristic curves were 6 

plotted for HMGB1 in DN and the area under the curve (AUC) estimated. AUC ranging 7 

from 0.7 to 0.9 signified a well-fitted model, while an AUC exceeding 0.9 indicated a 8 

highly fitting model.  9 

Immunoblotting 10 

Renal tissues were homogenised and sonicated using RIPA lysis buffer, supplemented 11 

with 1mM phenylmethanesulfonyl fluoride (PMSF, Solarbio, P0100). Additionally, 12 

cells were lysed using RIPA lysis buffer (1mM PMSF). After protein extraction, the 13 

separation process was carried out on SDS-PAGE gels. Subsequently, these proteins 14 

were transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore, 15 

ISEQ00010). After a 1 hour blocking step at room temperature using 5% (w/v) nonfat 16 

milk, the membrane underwent an overnight incubation at 4 °C with antibodies against 17 

E-cadherin (Proteintech, 20874-1-AP), Vimentin (Proteintech, 10366-1-AP), β-actin 18 

(Proteintech, 66009-1-Ig), and HMGB1 (Abcam, ab79823). This was followed by a 19 

subsequent 1 hour incubation at room temperature with secondary antibodies (CST, 20 

7074 and 7076;). Enhanced chemiluminescence reagents (Absin, abs920) and ImageJ 21 

(National Institutes of Health, V1.8.0) were used to visualize and analyze the protein 22 

bands. 23 

Histology analysis 24 

For histological observation of renal morphology, the renal tissues were fixed in 4% 25 

buffered paraformaldehyde, embedded in paraffin, and sliced at 3 millimeters. In 26 

accordance with the protocol, hematoxylin and eosin staining (HE; Solarbio, G1220), 27 

Masson trichrome staining (Solarbio, G1346), and periodic acid-schiff staining (PAS; 28 
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Solarbio, G1281) were performed, and the stained sections were analyzed using a 1 

computational color image analysis system (Leica Microscope, Germany DM2500). 2 

Utilizing ImageJ software, the collagen tissue area was calculated to assess renal 3 

fibrosis quantitatively.  4 

Biochemical assays 5 

Blood and urine were measured by automatic clinical chemistry analyzer 6 

(ARCHITECT, c16000). 7 

Immunofluorescent staining 8 

The renal tissues section for immunofluorescent staining was treated in the same 9 

manner as for histology analysis, and heat-mediated antigen retrieval with Tris/EDTA 10 

buffer pH 9.0 was carried out before staining was conducted. After fixing with 4% 11 

buffered paraformaldehyde, 0.3% Triton X-100 was used to permeabilize the HK2 cells. 12 

Rabbit anti-HMGB1 antibody (Abcam, ab79823); Mouse anti-β-actin antibody 13 

(Proteintech, 66009-1-Ig) and Lotus Tetragonolobus Lectin (LTL, Biotinylated; Vector 14 

Laboratories, B-1325-2) were used for immunofluorescence staining, and images were 15 

obtained under a positive fluorescence microscope (ZEISS, Axio Imager) and a 16 

confocal microscopy (ZEISS, LMS 710). 17 

QUANTIFICATION AND STATISTICAL ANALYSIS 18 

Statistical analyses of clinical parameters were exclusively conducted using SPSS 26.0 19 

software. With GraphPad Prism 9.4, 16 candidate peptides and all verification 20 

experiments were analyzed statistically. R software (version 4.2.1) was used to analyze 21 

of all proteomics data analysis. A Shapiro-Wilk test was performed on the numerical 22 

variables of this study for the purpose of testing normality. To compare normal 23 

variables (mean ± SD), we used an analysis of variance (ANOVA), while to compare 24 

variables with non-normality (median, interquartile range), we used the Kruskal-Wallis 25 

test. Using Fisher’s exact test, this study tested classification variables. The factors that 26 

influenced the rise of HMGB1 were determined using multiple stepwise regressions. 27 
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All statistical tests of verification experiments were performed by the two-tailed 1 

Student’s t-test. P-value  0.05 was defined statistically significant. 2 
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Table1. Demographic Characteristics of the Participants 

Variable 
NC 

(N=6) 

DM 

(N=6) 

DN-EM 

(N=6) 

DN-L 

(N=6) 
P 

Age 

(Years) 
51.50±5.01 48.17±5.04 63.83±12.98 b 63.50±8.31 b 0.007~ 

Gender 

(Female /Male) 
4/2 2/4 4/2 2/4 0.541# 

eGFR 

(ml/min/1.73m2) 
99.57±5.68 102.06±7.43  63.67±15.04ab 18.89±9.38abc <0.001~ 

Glu (mmol/L) 4.47 (4.14-4.72) 7.59 (6.02-10.08) a 6.68 (5.99-13.66) a 8.6 (5.35-11.58) a 0.010* 

BUN (mmol/L) 5.12±1.45 5.00±1.37 6.29±2.26 10.06±1.76abc <0.001~ 

SCr (μmol/L) 57.5 (47.25-63.75) 54.0 (48.00-60.75) 67 (62.00-116.25) 180 (177.25-396.25) ab 0.001* 

BUN/SCr 0.085 (0.075-0.115) 0.09 (0.068-0.118) 0.09 (0.083-0.090)  0.04 (0.028-0.055) ab 0.009* 

Cys-C (mg/L) 0.85 (0.79-0.89) 0.84 (0.77-0.89) 1.16 (1.05-2.07) 3.27 (2.24-5.42) ab <0.001* 

UA (μmol/L) 276.5 (216.75-313.50) 250.0 (228.00-411.75) 335 (235.50-359.50) 414 (289.00-429.75) 0.283* 

eGFR: estimated glomerular filtration rate; Glu: glucose; BUN: blood urea nitrogen; SCr: serum creatinine; BUN/ Scr; blood urea 

uitrogen to serum creatinine ratio; Cys-C: cystatin c; UA: uric acid; ~: Analysis of variance (ANOVA); #: Fisher’s Exact Test; *: Kruskal-

Wallis Test; a P < 0.05 vs NC group; b P < 0.05 vs DM group; c P < 0.05 vs DNEM group. 
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Table2. The basic information of shared proteins between MEblue and Cluster2 

Protein 

accession  
Protein description Gene name 

Subcellular locations from 

UniProtKB/Swiss-Prot 

Relevance scores 

from Genecards 

Q5T7C4 
High mobility group 

protein B1 
HMGB1 

Nucleus. Chromosome. Cytoplasm. Secreted. 

Cell membrane. Peripheral membrane 

protein. Extracellular side. Endosome. 

Endoplasmic reticulum-Golgi intermediate 

compartment. Endoplasmic reticulum. 

10.5875282287598 

H0YCV9 CD44 antigen CD44 
Cell membrane. Single-pass type I membrane 

protein. Cell projection, microvillus. 
6.28472328186035 

B1AHL2/ 

P23142 

Fibulin-1 FBLN1 
Secreted, extracellular space, extracellular 

matrix. 
2.0302460193634 

P23470 
Receptor-type tyrosine-

protein phosphatase gamma 
PTPRG 

Membrane. Single-pass type I membrane 

protein. 
None 

Q6UY14 ADAMTS-like protein 4 ADAMTSL4 
Secreted, extracellular space, extracellular 

matrix. 
None 
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Highlights 

 Potential biomarkers increased along with diabetic nephropathy progression 

 HMGB1 as an acceptable biomarker for the early monitoring of diabetic 

nephropathy 

 HMGB1 was elevated under high glucose conditions both in cells and animals 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-HMGB1 Abcam ab79823; 

RRID:AB_1603373 

Anti-E-cadherin Proteintech 20874-1-AP; 

RRID:AB_10697811 

Anti-Vimentin Proteintech 10366-1-AP; 

RRID:AB_2273020 

Anti-β-actin Proteintech 66009-1-Ig; 

RRID:AB_2687938 

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technology 7074; 

RRID:AB_2099233 

Anti-mouse IgG, HRP-linked Antibody Cell Signaling Technology 7076; 

RRID:AB_330924 

Lotus tetragonolobus lectin (LTL) Vector Laboratories B-1325; 

RRID:AB_2336558 

FITC Goat Anti-Rabbit IgG (H+L) Antibody ApexBio Technology K1203 

Cy3 Goat Anti-Mouse IgG (H+L) Antibody ApexBio Technology K1207 

Cy3 Goat Anti-Rabbit IgG (H+L) Antibody ApexBio Technology K1209 

Biological samples 

Serum samples from patients Affiliated Hospital of 

Guizhou Medical University 

This paper 

Chemicals, peptides, and recombinant proteins 

Streptozotocin (STZ) Solarbio S8050 

Dulbecco’s modified Eagle’s/F12 medium Gibco C11330500BT 

Fetal bovine serum Gibco 2497736 

D-glucose Solarbio G8150 

phenylmethanesulfonyl fluoride (PMSF) Solarbio P0100 

Enhanced chemiluminescence reagents Absin abs920 

Critical commercial assays 

Pierce™ Top 12 Abundant Protein Depletion 

Spin Columns Kit 

Thermo Fisher scientific 85164 

BCA Protein Assay Kit Beyotime P0011 

Hematoxylin and eosin staining Kit Solarbio G1220 

Masson trichrome staining Kit  Solarbio G1346 

Periodic acid-schiff staining Kit Solarbio G1281 

Deposited data 

Mass spectrometry data ProteomeXchange PXD047872 

Experimental models: Cell lines 
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 2 

HK-2 cells 

 

Procell Life 

Science&Technology 

Cat# CL-0109; 

RRID:CVCL_0302 

Experimental models: Organisms/strains 

C57BL/6 Charles River RRID:MGI:2159769 

Software and algorithms 

STRING N/A http://string-db.org 

RRID:SCR_005223 

Cytoscape (version 3.9.1) Open source https://cytoscape.org 

RRID:SCR_003032 

GraphPad Prism GraphPad Software RRID:SCR_002798 

ImageJ National Institutes of Health RRID:SCR_003070 

R (version 4.2.1) R Project https://www.r-

project.org 

SPSS 26.0 IBM RRID:SCR_002865 

Other 

polyvinylidene difluoride (PVDF) 

membranes 

Millipore ISEQ00010 
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