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SUMMARY

Current diagnostic methods for diabetic nephropathy (DN) lack precision, especially in
early stages and monitoring progression. This study aims to find potential biomarkers
for DN progression and evaluate their accuracy. Using serum samples from healthy
controls (NC), diabetic patients (DM), early-medium stage DN (DN-EM), and late-
stage DN (DN-L), researchers employed quantitative proteomics and Mfuzz clustering
analysis revealed 15 proteins showing increased expression during DN progression,
hinting at their biomarker potential. Combining Mfuzz clustering with weighted gene
co-expression network analysis (WGCNA) highlighted five candidates (HMGB1,
CD44, FBLN1, PTPRG, and ADAMTSL4). HMGB1 emerged as a promising
biomarker, closely correlated with renal function changes. Experimental validation
supported HMGBI1’s upregulation under high glucose conditions, reinforcing its
potential as an early detection biomarker for DN. This research advances DN
understanding and identifies five potential biomarkers, notably HMGB1, as a
promising early monitoring target. These findings set the stage for future clinical

diagnostic applications in DN.
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INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disease characterized by chronic
hyperglycemia caused by impaired insulin secretion or utilization. Globally, over 415
million people suffer from DM, and 693 million are expected to be diagnosed with it
by 2045 *. Diabetes nephropathy (DN) is one of the major microvascular complications
of DM, and approximately 30%-40% of patients with DM will develop DN 2.
Unfortunately, the majority of DN patients progress without symptoms until they
develop renal injury and then irreversible renal failure, which is treated only with
kidney transplantation and dialysis. Besides posing a threat to patients’ lives, DN is
also an enormous economic and medical burden on patients and society 2. To effectively

prevent and treat DN, early diagnosis is therefore crucial.

Renal biopsy is still the golden standard for diagnosing and typing DN. Nonetheless,
this invasive approach has inherent limitations, such as the possibility of bleeding
complications and the biases in its sampling 4. Therefore, the diagnosis of DN is
increasingly being conducted using non-invasive surrogate techniques. Biomarkers can
be used to identify people with diseases and redefine disease classifications >°. Classic
markers for assessing the severity of DN include proteinuria, estimated glomerular
filtration rate (eGFR), creatinine (Crea) and blood urea nitrogen (BUN) 7%, These
biomarkers accurately quantify the degree of renal injury in patients with DN, but they
don’t have sufficient accuracy to discern the mild renal insufficiency of early DN. It is
now widely accepted that albuminuria, a protein that is filtered through the glomerulus
and then reabsorbed by the renal tubules, can monitor the development of DN °.
However, 20-40% of DM patients already have an eGFR decline before they are
detected with albuminuria *°. Furthermore, the precise role of novel biomarkers such as
microRNA (miRNA), long noncoding RNA (IncRNA), and urinary exosomes in DN
still remains to be determined %, Therefore, DN management requires non-invasive or
minimally invasive methods that are more sensitive and selective for the detection of

DN as well as monitoring the progression of DN.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Proteomics based on mass spectrometry (MS) is the technology of choice for analyzing
proteins to discover potential disease-related biomarkers 23, Serum contains
numerous secreted proteins that play crucial roles in physiological and pathological
changes 4. Therefore, comprehensive serum proteomics can be used to discover novel
protein biomarkers for DN that may be obtained to learn more about pathophysiology
and increase the accuracy of diagnostic stratification. Despite numerous studies
exploring serum proteomics for potential DN biomarkers, the detection of only a
limited number of proteins has been predominantly attributed to methodological
limitations >%6, Recent, studies involving the proteomics of serum for DN progression
had previously been undertaken, but they were unable to distinguish DM from early
DN 7. Moreover, many studies only focus on biomarkers in serum, while very few
studies examine molecules identified through in vitro, cell-based or animal models.
Thus, the biomarkers of DN progression based on serum proteomics need to be further

explored.

In this study, we investigated the serum proteome of early-medium stage and late stage
DN patients compared with diabetic patients and healthy control subjects. Then, we
clustered the associated biomarkers with a similar expressive variation trend, focusing
on the cluster containing rise biomarkers along with DN development. With weighted
gene co-expression network analyses (WGCNA) of all biomarkers, we explored which
of the biomarkers was most relevant for DN progression and whether it was able to
discriminate DN or not. We confirmed that the biomarker is elevated in both cell-based
and animal models of high glucose. This study identifies a potential candidate
biomarker to monitor the progression of DN patients and may be used in clinical

practice.

RESULTS

Participant characteristics and assessment of the serum proteome analysis
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A total of 96 patients, including healthy control (NC, male/female: 11/22), diabetic
(DM, male/female:20/14), and diabetic nephropathy (DN, male/female: 16/13) were
recruited. Upon enrollment for serum proteomic analysis, patients’ inclusion and
exclusion criteria were reset. According to the estimated glomerular filtration rate
(eGFR) categories in chronic kidney disease (CKD) by the Kidney Disease Improving
Global Outcomes (KDIGO) 8, patients were further divided into four groups (Figure
1A): healthy control (NC, eGFR > 90 ml/min/1.73 m?), diabetic (DM, eGFR > 90
ml/min/1.73 m?), early medium stage (DN-EM, 30 < eGFR < 90 ml/min/1.73 m?), and
late stage (DN-L, eGFR < 30 ml/min/1.73 m?), with 6 patients in each group.
Demographic and clinical characteristics of the subjects are demonstrated in Table 1.
The study included 12 females and 12 males, ages 40-80, and patients in the DN-EM
and DN-L groups were older than the DM group; the observed distinction presented a
statistically significant difference. No significant discrepancies were found in the
gender and levels of uric acid between the four groups of participants. The blood
glucose level in the DM, DNEM and DNL groups was significantly higher than that in
NC group. In the DN-L group, serum creatinine and cystatin c levels were significantly
elevated, and the blood urea nitrogen to serum creatinine ratio was significantly lower
than in the NC and DM groups, while the level of blood urea nitrogen was significantly
higher than in the NC, DM and DNEM groups. Meanwhile, the DN-L group had a
significantly lower eGFR than the NC, DM and DNEM groups, and the DMEM group

had a significantly lower eGFR than DM.

Different protein levels in serum range over large orders of magnitude and are very
heterogeneous compared to tissues or cellular samples. To obtain more comprehensive
and useful proteins related to the DN pathogenesis, we filtered out the interference of
high abundance proteins in serum. Subsequent, 1602 proteins were identified by
LC/MS, of which 1402 proteins could be quantified (Figure 1B). It was consistent with
the general rule based on enzymatic hydrolysis and mass spectrum fragmentation mode
that most peptide segments were distributed in 7-20 amino acids, indicating that the

distribution of peptide lengths identified by mass spectrum met quality control
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standards (Figure 1C). In order to ensure the reliability of the serum samples and assay
technique, and to confirm the statistical consistency of the quantitative outcomes, a
comprehensive approach was undertaken. This involved the utilization of various
methods, including Pearson’s Correlation Coefficient (PCC), principal component
analysis (PCA), and assessment of Relative Standard Deviation (RSD). PCC analysis
showed that there were high correlations between all specimens, with correlation
coefficients generally higher than 0.9 (Figure 1D). Further analysis of these proteins by
PCA demonstrated that the four groups could be successfully distinguished, particularly
in the NC and DM groups, where reproducibility was high within each group (Figure
1E). It is worth highlighting that the DN-EM and DN-L groups exhibited the most
pronounced dissimilarity compared to the other stages. This suggests a substantial
alteration in the protein expression profile during the DN stage. Quantitative
repeatability of proteins in each group was acceptable as shown by the boxplot of RSD
(Figure 1F). Based on quality control data, the samples exhibited high quality, and the
accuracy of detection techniques indicates that any alterations observed in serum

proteins may be associated with pathological disorders.
Serum proteome profiling of patients with diabetic nephropathy

Comprehensive view of proteomic changes related to DN pathogenesis, quantitative
results of serum proteomics were performed differentially expressed proteins analysis
(P <0.05, FC > 1.5 and FC < 1/1.5). After pre-processing and missing value filtering,
a total of 484 differential proteins were shown by the differential expressed proteins
heatmap (Figure 2A). In the cluster heat map, most NC and DM groups had the same
pattern of differentially expressed proteins, whereas the DN-EM and DN-L groups had
the same pattern. In addition, we analyzed the volcano plots of pairwise comparisons
between NC, DM, DN-EM and DN-L groups to visualize differentially expressed
proteins (Figures 2B-2G). In the context of pairwise comparisons between groups,
proteins exhibiting differential expression were visually represented as those that
showed increased and decreased levels (Figure 2H). A closer look at the two DN groups

had more differentially expressed proteins from the NC and DM groups, and that the
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NC group in particular had the most differentially expressed proteins compared to DN-
EM and DN-L. Then, we selected all differentially expressed proteins from pairwise
comparisons between groups and plotted UpSet plots of them, which hinted at 40
common upregulated proteins and 23 common downregulated proteins in DN-EM
versus NC, DN-L versus NC, DN-EM versus DM and DN-L versus DM (Figures 2I-
2J); black arrow). The list of 40 common upregulated and 23 downregulated

differentially expressed proteins was showed in Supplementary Table S1-S2.
Serum proteomics revealed the progression of diabetic nephropathy

With serum proteomics, we performed the fuzzy c-means algorithm *° to cluster the
underlying protein determinants of DN progression and onset in circulation. It can
cluster the associated protein expression patterns, and proteins in the same cluster
display similar expressive variation trends. A total of 5 distinct clusters of temporal
patterns representing different regulated proteins were observed (Figure 3). In these
clusters, cluster 1 represents downregulated proteins, clusters 2 and 5 represent
upregulated proteins, and clusters 3 and 4 represent bi-modally expressed proteins. In
this study, we focused on proteins that are elevated during DN progression. An analysis
of gene ontology (GO) of proteins in each cluster (Supplementary Figure S1) revealed
that the upregulated proteins tend to perform a variety of functions, including
extracellular matrix (ECM) structural constituent, cell adhesion molecule binding,
ECM, endoplasmic reticulum lumen and biological adhesion (Cluster 2), presumably
responsible for cell growth, polarity, shape, migration and metabolic activity in DN.
KEGG pathway enriched proteomics in Cluster 2 are mainly associated with protein
digestion and absorption, PI3K-Akt signaling pathway, human papillomavirus
infection, ECM-receptor interaction and protein processing in endoplasmic reticulum

(Figure 3 and Supplementary Figure S2).

For reliable DN diagnostic indicators, we set the membership of cluster, the relative
standard deviation within groups, and the number of unique peptides in cluster 2. A
total of 16 peptides were eligible and derived from different 15 proteins, including
ADAMDEC1, ADAMTSL4, AMBP, APOA4, AZGP1, CD44, COL18A1, COL6A3,

7
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EEAL, FBLN1, FBN1, HMGB1, MAN1Al, OAF and PTPRG (Supplementary Table
S3). Each peptide’s expression levels across all four groups were compared (Figure 4A),
and the panel of FBLN1, AZGP1, CD44, ADAMDEC1, ADAMTSL4 and HMGB1
showed significant differences (P < 0.001). To investigate the mechanism of DN
progression, PPl network data were constructed by inputting 15 proteins into the
STRING Database, then uploaded into Cytoscape, and selected the top 21 core proteins
using the Cytohubba plug-in, based on descending degrees (Figure 4B). Based on the
highest scores, CD44, HMGB1 and AMBP may play a crucial role in DN progression.
These 15 proteins were also subjected to enrichment analysis for GO and KEGG, whose
functions are mainly related to ECM structure and receptor interaction, and ECM

deposition plays an important role in DN development (Figure 4C).

High mobility group protein Bl is a biomarker for monitoring diabetic

nephropathy

Analysis of co-expression networks serves as a valuable tool in unraveling the intricate
changes characteristic of DN. This is particularly essential because the emergence of
DN phenotypes stems from the amalgamation of numerous and gradual alterations in
the deregulated expression of multiple proteins, rather than the isolated deregulation of
individual proteins. %. Co-expression network analysis was conducted using all
proteins with the weighted gene co-expression network analysis (WGCNA) approach
2L Soft thresholding power (B = 8; cut-off = 0.85) with increased adjacency was used
to create a weighted gene network (Supplementary Figure S3), resulting in five distinct
modules of different colors (Figure 5A). Initial visualization of the Topological Overlap
Matrix (TOM) of proteins after DN was performed using a heatmap plot with various
module assignments and protein dendrograms (Figure 5B). Based on this, the module-
trait relationship between the module eigengene E and the trait DN were then
investigated, the DN group contains all of the proteins from the DM, DN-EM and DN-
L groups (Figure 5C). Interestingly, only blue module is most significantly correlated
both with the trait NC (cor = 0.51 and P = 0.01) and DN (cor = 0.45 and P = 0.03).

Finally, we explored the overlap of proteins in blue module and cluster 2 with a Venn
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diagram (Figure 5D). The overlapping proteins (HMGB1, CD44, FBLN1, PTPRG and
ADAMTSLA4) were display in Table 2 with their relevance scores of DN, which are

obtained from the Genecards database.

In our analysis, our research indicates a significant connection between the serum
protein High mobility group protein B1 (HMGB1) and the development of DN. We
tested HMGB1’s ability to discriminate between patients who developed DN and those
who did not. Based on ROC curve analysis, we found that HMGB1 was a good marker
for distinguishing DN-EM versus NC (AUC of ROC =0.917), DN-L versus NC (AUC
of ROC = 1.000), DN-EM versus DM (AUC of ROC = 0.889) and DN-L versus DM
(AUC of ROC = 1.000) (Figure 6A). Furthermore, intensity of HMGB1 was inversely
related to eGFR (Pearson’s R = -0.787 and P <0.001) and the blood urea nitrogen to
serum creatinine ratio (Pearson’s R = -0.631 and P <0.001). Meanwhile, intensity of
HMGB1 was positively correlated blood urea nitrogen (Pearson’s R = 0.646 and
P <0.001), serum creatinine (Pearson’s R = 0.688 and P <0.001) and cystatin ¢
(Pearson’s R = 0.661 and P <0.001) (Figures 6B-6F). These findings suggest that
HMGBL, particularly when it comes to individuals in the early and advanced stages of

DN, may accurately monitor the status of the disease.
Investigation of high mobility group protein B1 in diabetic nephropathy model

Although serum proteome profiling method does not require that specific protein
epitopes be detected, further research is needed to determine if their biological response
can be applied across species and sources. Injection of streptozotocin (STZ) can
generate well-established diabetic mouse models, and these can commonly be used to
study the pathogenesis of DN. We took advantage of a diabetic mice to determine the
role of HMGB1 on improving the development of DN. Diabetic mice at 28 weeks with
severe pathophysiologic alterations observed in the kidney compared to diabetic mice
at 20 weeks. As diabetes progressed, the renal tissues showed increasing damage,
collagen deposition, and irregular thickening of the basement membrane, indicating
that the diabetic mouse model was feasible (Figure 7A). Compared to the control group,
mice injected with STZ at 20 and 28 weeks had significantly higher blood glucose

9
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levels (Figure 7B), and most importantly, their serum creatinine (Figure 7C), urea
nitrogen (Figure 7D) and urinary microalbumin to creatinine ratio (ACR; Figure 7E)

levels, which reflect the change in kidney function, increased gradually with diabetes.

HMGBL1, a biomarker we identified as being linked to DN in human serum, also
displayed a noteworthy upregulation as diabetic mice progressed through renal tissues.
Immunofluorescence (Figure 7F) and Western blot analysis (Figure 7G) revealed that
the kidney tissues of diabetic mice with renal injury have higher levels of HMGB1, and
that this level increases with the duration of diabetes. Interestingly, the expression of
HMGBL in the kidney tissues of control mice increased with age, although it was not
statistically significant (Figure 7G). Additionally, an in vitro model of DN renal tubular
epithelial cells (HK2 cells) was established. A time-dependent culture of HK2 cells in
high-glucose medium (30 mM) increased HMGB1 protein level at 36 hours as
epithelial-mesenchymal transition (EMT) changes intensified (Figure 7H). Observing
treated HK2 cells for HMGBL1 expression by immunofluorescence showed increased
expression of HMGBL1 in the nucleus and cytoplasm after high-glucose-stimulated HK2
cells (Figure 71). Our data implicate that HMGBL1 is a newly identified marker that we

can evaluate as a potential marker to monitor the progress of DN.

DISCUSSION

In this study, comprehensive quantitative proteomics on serum from four independent
cohorts was conducted to determine biomarkers of DN progression. First, we quantified
thousands of proteins with discovery mass spectrometry without prior knowledge,
which allowed us to identify proteins not previously associated with DN. After protein
relative quantification between NC, DM, DN-EM and DN-L patients the elevated
expressive variation trend of a total of 15 proteins was further identified in DN
progression by Mfuzz clustering analysis. We further identified five proteins from
overlapping analysis between rising cluster 2 and WGCNA, which were measured to

discriminate between patients who developed DN and those who did not. Based on the

10
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results, we explored Genecard’s database of DN scores and found that HMGB1 was the
priority biomarker in the development of DN and was tested in both cell and animal

models of high glucose.

Although proteomics can be utilized in treating many diseases %2, early diagnosis of DN
by proteomics has been a challenge 2%, Several studies have shown that profiling urinary
proteomics can identify novel biomarkers for DN 242°. Nevertheless, few trials have
been conducted to assess the monitoring value of blood for the course of DN, especially
the early diagnosis of DN 7. In early DN diagnosis, proteomics may be limited due
to vast heterogeneity and widespread protein abundance in blood, as well as strong
proteolytic activity, which can muddle interpretation of the blood proteome 2°. In our
study, we filtered out the high abundance of interfering signals using Field-Asymmetric
lon Mobility Spectrometry (FAIMS), which can selectively identify compounds in a
complex background, and detect more key proteins in blood ?’. 1602 proteins were
identified by filtering out the high abundance of proteins, of which 1402 could be
quantified (Figure 1B). Based on the disease course, PCA analysis of 1402 quantified
proteins and heat map analysis of 484 differentially expressed proteins showed
significant protein expression changes in the serum of patients in the DN stage (Figure
1E, 2A), indicating the various molecular alterations induced by DN also affect the
expression in serum, especially early stages 28. Although the serum proteome changed
much less both in NC versus DM and DN-EM versus DN-L, the cohort with early DN
had clearer differences than the DM cohort, which facilitated finding biomarkers for

early DN (Figure 2H).

Variations in eGFRs are known to monitor DN progression, but compensatory changes
in the remaining nephrons might overestimate or underestimate the true GFR in the
condition 2°. In the present work, we group 4 cohorts: healthy, diabetic, early medium
stage, and late stage of DN, to gain a better understanding of serum protein alterations
during DN progression. On the basis of this category, we cluster the associated proteins
with similar expressive variation trends in DN progression (Figure 3). In Cluster 2,

proteomics has increased along with DN progression, and proteins with high expression

11



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

are generally more detectable. In KEGG pathway enriched proteomics of Cluster 2
(Figure 3 and Supplementary Figure S2), one of the most prominent signaling pathways
was the PI3K-AKT pathway, consistent with previous studies demonstrating that PI13K-
AKT signaling is implicated in DN 303, Similar to our result, PI3K/Akt signaling
contributes to ECM accumulation, which promotes the progression of renal interstitial
fibrosis in DM 3233, To differentiate early DN from DM, we further refined screening
biomarkers. Overall, 15 biomarkers strongly associated with DN progression were
screened in Cluster 2 and mainly related to ECM structure and receptor interaction. In
DN progression, ECM proteins are frequently deposited in the mesangium and renal

tubule interstices of the glomerulus and basement membranes of patients with DN 34,

Because DN progression involves multiple factors and has a complex proteins
alteration %, a comprehensive analysis of multiple deregulated proteins is needed to
monitor DN progression 3. Thus, using WGCAN and Mfuzz, we obtain 5 biomarkers
(HMGBL1, CD44, FBLN1, PTPRG and ADAMTSLA4) that were highly correlated with
DN progression (Figure 5). Among the 5 candidate biomarkers, HMGB1, the most
promising biomarker relevant to DN, has been verified in both cell and animal models
of high glucose (Figure 7). A nonhistone protein HMGBL is mainly located inside the
nucleus of a cell 3. When the cell is stimulated by various kinds of damage, it releases
itself into the extracellular space as a damage-associated molecular pattern (DAMP)
molecule that participates in inflammatory responses, differentiation and migration of
cells *8%*°, HMGBI, as a pathogenic factor in DN, interacts with TLRs and RAGE,
which are its receptors on the cytomembrane, activating innate immune responses by
promoting nuclear translocation of transcription factors %42, Interestingly, high levels
of HMGBL in serum from patients with DN can induce podocyte autophagy, apoptosis,
and EMT 3. We speculate that after persistent high glucose stimulation in DN, HMGB1
may be released from the nucleus into the extracellular space, triggering positive
feedback through TLRs and RAGE receptors that further exacerbates renal fibrotic
factors. However, in order to understand the detailed mechanism, further investigation

is required. In addition, studies have shown that HMGBL1 is elevated both in DN
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patients’ kidney tissues and in those from DN mice, which is consistent with our
findings ** (Figure 7G). In addition to the HMGB1 mentioned above, CD44 is a cell
adhesion molecule, and its ligands are various ECM components *>46, CD44 regulates
the expression of ECM derived from parietal epithelial cells (PEC) and podocytes in
DN #’. Another candidate biomarker, FBLN1, is a secreted glycoprotein that interacts
with ECM proteins to maintain ECM integrity **. Exosomal FBLN1 promotes DN
progression through inducing EMT in the proximal renal tubules *. Patients with CKD
and T2DM showed an increased risk of cardiovascular events when their circulating
FBLN1 levels were elevated °. The remaining two biomarkers, PTPRG and
ADAMTSLA4, have not been associated with DN, similar to what we found in our results.
Nevertheless, to determine whether these proteins are diagnostic biomarkers for DN

progression, additional large-scale investigations are needed.

Our research showed that HMGB1 was highly correlated with several renal function
indicators (Figures 6B-6F) and could be a good marker for the early detection of DN,
especially distinguishing healthy control and DN patients (Figure 6A). Based on our
results, HMGB1 may be identified as a potential novel biomarker for DN progression.
Of course, as a single biomarker, HMGBL1 also has limitations. As the age confounder
factor could not be excluded in DN patients (Table S4; p=8552.354, P=0.011), the
expression of HMGBL in the kidney tissues of control mice increased with age, which
hinted that the elevation of HMGB1 may be related to age factors (Figure 7G).
Furthermore, HMGBL1 proteins could serve as a potential non-invasive biomarker for
several inflammation-related diseases or tumors®->3, Inflammation is also crucial to DN
progression>*, which seems that HMGB1 might serve as a general biomarker of early
inflammation. By combining other biomarkers, the monitoring accuracy of HMGBL1 in
DN progression might improve. Intriguingly, a candidate biomarker in our study is
CD44, which is increased by extracellular HMGB1 in tumor progression®®. However,
it’s not clarified whether HMGB1 and CD44 can be combined to monitor DN

progression, and whether HMGBL increases CD44 to regulate it. Thus, further clinical
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sample prediction models and mechanism studies are urgently needed to clarify the role

of HMGB1 as a potential biomarker for early DN progression.

A novel aspect of this study is that, based on the stages of DN patients and clustering
analyses of proteins with similar altered trends in progression, we were able to identify
biomarkers in serum that can reflect DN progression more accurately. A validated
biological response of HMGB1 was found across species and sources, making it a

reliable biomarker for DN progression, but clinical translation needs more exploration.

In conclusion, we investigated the proteomes of patients with DM or different stages of
DN and healthy control by gquantitative proteomics to gain an understanding of serum
protein alterations during DN progression. Five promising biomarkers, HMGB1, CD44,
FBLN1, PTPRG and ADAMTSLA4, allowed monitoring of the progression of DN,
whereas HMGBL1 was highly correlated with renal function alterations and could be an
appropriate marker for the early detection of DN, especially distinguishing healthy
controls and DN patients. Although there is insufficient evidence to conclude that these
biomarkers can replace invasive diagnostics for DN, with further research, these

proteomics changes may help clinicians identify DN in the early stages.

LIMITATIONS OF THE STUDY

Despite our findings, this study has several limitations. First, as this study only involves
a small number of patients, it is necessary to validate the results with additional patients
within each cohort. Statistics show significant differences in all results, and with
increased sample size, the difference in HMGBL1 elevation in serum of DN patients may
increase. Second, there were not enough clinical data collected in this retrospective
study, so no adjustments for clinical covariates or pathological confounders were made.
Third, the HMGB1 is an inflammation-associated molecule, and many
proinflammatory factors must be considered before it can be used as a biomarker for
DN. Thus, more research cohorts with DN are needed to validate the biomarker. Fourth,

the findings from our study were limited to a single hospital, which may limit their
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generalizability. Finally, non-diabetic chronic kidney disease was not profiled for
serum proteomics, so we cannot infer that the serum protein alterations in DN are

exclusively due to diabetes.
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Figure legends
Figure 1. Design and quality control of serum proteomics in DN.

(A) Overview of the study structure and cohort particulars: In total, 96 participants from
healthy control, diabetic, and diabetic nephropathy were recruited and further divided
into four groups, including healthy control (NC), diabetic (DM), early medium stage
(DN-EM), and late stage (DN-L), with 6 patients in each group to perform liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

(B) Overview of the number of proteins identified by LC-MS/MS analysis.
(C) Distribution of identifiable peptide lengths from LC-MS/MS analysis.

(D) Pearson’s Correlation Coefficient (PCC) analysis from the proteomics data in NC,
DM, DN-EM, and DN-L groups. Color saturation in red and blue indicates a degree of

correlation present among the samples.

(E) Principal component analysis (PCA) from the proteomics data shows
discrimination between NC (gray), DM (yellow), DN-EM (blue), and DN-L (red)

groups. Each dot represents a single sample.

(F) Relative Standard Deviation (RSD) from the proteomics data shows intra-group
data repeatability in NC (gray), DM (yellow), DN-EM (blue), and DN-L (red) groups.

Figure 2. Serum proteome profiling of patients with DN

(A) Heatmap of differential expressed proteins (DEPs) from the proteomics data in NC,
DM, DN-EM, and DN-L groups. Red: upregulated proteins; blue: downregulated

proteins.

(B-G) Volcano plots of DEPs from the proteomics data for each pairwise comparison
(P<0.05,FC>1.5and FC < 1/1.5). Gray: proteins that are not significantly deregulated;

red: upregulated proteins; blue: downregulated proteins.

(H) Overview of the increased and decreased DEPs from the proteomics data for each

pairwise comparison. Red: upregulated proteins; blue: downregulated proteins.
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(I-J) UpSet plots show the intersections between DEPs from the proteomics data for
each pairwise comparison (red sets, upregulated proteins; blue sets, downregulated
proteins). Circles connected to the intersection indicate which DEPs are included in the

intersection, and the size of the intersection is displayed in the main bar (right bars).

Figure 3. Mufzz analysis reveals different expression patterns of proteins in DN

Progression

A protein expression line graph is shown on the left, a heat map is shown in the middle,
and the top 2 enrichment analysis entries are shown on the right. Line graph: the
horizontal axis represents the sample, the vertical axis depicts the relative protein
expression, a line represents a protein, and the color of the line indicates the affiliation
intensity in the cluster. Heatmap: the horizontal axis represents the sample, the vertical
axis depicts different proteins, and the heatmap color indicates the relative expression
of the protein in the sample. Domain enrichment is red, Gene Ontology Biological
Process (GO-BP) enrichment is blue, Gene Ontology Cellular Component (GO-CC)
enrichment is green, Gene Ontology Molecular Function (GO-MF) enrichment is

purple, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment is orange.
Figure 4. A panel of proteins strongly associated with DN progression

(A) Box-and-whisker plot to visually represent the dispersion of LFQ intensity values
for APOA4, FBLN1, OAF, MAN1Al, AZGP1, EEA1l, PTPRG, FBNI1, CD44,
ADAMDECI, ADAMTSL4, COL18A1, COL6A3, AMBP and HMGBI in serum. NC
is gray, DM is yellow, DN-EM is blue, DN-L is red. A median line is shown in the
middle of the box, the top and bottom represent the upper and lower quartiles, and
whiskers indicate the upper and lower limits for outliers. *P < 0.05, **P < 0.01, ***P

<0.001, ****P <(0.0001 by multiple comparison.

(B) PPI network showing the interactions of the 15 proteins (shown in Figure 4A) based

on STRING. The darker the node, the more core the interaction.

(C) Gene enrichment analysis (BP: GO-BP, CC: GO-CC, MM: GO-MF, KEGG) of 15
proteins (shown in Figure 4A). The horizontal axis represents the ratio of proteins, the
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vertical axis represents enrichment analysis entries, the color shades represent adjust P-

values, and the circle size represents the protein number.
Figure 5. Novel biomarkers associated with DN progression achieved by WGCNA

(A) Cluster dendrogram of the topological overlap between proteins. Highly similar
modules are delineated by hierarchical clustering dendrograms and assigned arbitrary

colors to each module below.

(B) The dendrogram and network heatmap plot of the topological overlap between
proteins. A module membership, color-coded for easy identification, is displayed below
and to the right of the dendrograms. The color saturation in yellow and red indicates a

greater degree of interconnection between co-expressions.

(C) Heatmap of the module-trait relationship between the module eigengene E and the

trait DN. An eigengene corresponds to each row, and a trait to each column.

(D) Venn diagram of DEPs in the blue module and 15 proteins (shown in Figure 4A)

from cluster 2.
Figure 6. The diagnosis values of HMGB1 in DN progression

(A) Receiver-operating characteristic (ROC) curve of HMGBI1 for each pairwise
comparison. AUC, area under the ROC curve. AUC has low diagnostic accuracy at 0.5
to 0.7, certain diagnostic accuracy at 0.7 to 0.9, and high diagnostic accuracy at 0.9 or

more.

(B-F) Pearson correlation between intensity of HMGB1 and eGFR, blood urea nitrogen
to serum creatinine ratio (BUN/Scr), blood urea nitrogen, serum creatinine, and cystatin
c, respectively. R > 0 represents positively correlated, and R < 0 represents inversely

correlated.
Figure 7. Validation of HMGBI1 in DN model

(A) Hematoxylin and eosin staining (HE), masson trichrome staining, and periodic

acid-schiff staining (PAS) staining show typical DN changes in diabetic mice; scale
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bars = 50 pum; inflammatory cell infiltration (yellow arrow), collagen deposition (black
arrow), and irregular thickening of the glomerular basement membrane (red arrow) and
glomerular capsule (green arrow). NC20W and NC28W is normal mice at 20 and 28
weeks, DM20W and DM28W is diabetic mice at 20 and 28 weeks.

(B-E) Blood glucose, serum creatinine, and blood urea nitrogen levels and urine

albumin to creatinine ratio of normal mice (blue) and diabetic mice (red).

(F) Immunofluorescence staining for HMGB1 (red) and lotus tetragonolobus lectin
(LTL, green, the marker of renal tubular brush brush) in the kidney tissues of mice;

scale bars = 50 um.

(G) In the analysis of kidney tissue from mice, Western blotting was utilized to ascertain
the expression levels of HMGBI1 as well as proteins associated with epithelial-

mesenchymal transition (EMT); quantification of relative levels of protein expression.

(H) Western blotting was employed to assess the expression of HMGBI1 and proteins

indicative of EMT in HK2 cells stimulated with high glucose.

(I) Immunofluorescence staining for B-actin (red) and HMGBI1 (green) in high-glucose-

stimulated HK2 cells; white arrow is cytoplasm; scale bars =20 um.

All experiments are performed three times and data were expressed as mean + standard

deviation (SD). *P<0.05, **P<0.01 and ***P<0.001 by Student’s ¢-test.
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STAR METHODS

KEY RESOURCES TABLE
RESOURCE AVAILABILITY
Lead contact

For additional details and inquiries regarding resources and reagents, please contact the

primary point of contact, Lirong Liu (Email: lirongliu@gmc.edu.cn).
Materials availability

In this study, no novel reagents were developed.

Data and code availability

® The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE 8 partner repository with the dataset

identifier PXDO047872.
® This paper does not report original code.

® Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
Clinical Samples

The study population was all Han Chinese, comprising healthy control (NC, n=33,
54.67+£18.24 years, male: 10, female: 23), diabetic (DM, n=34, 57.03£16.07 years, male:
20, female: 14), and diabetic nephropathy (DN, n=29, 62.10+10.69 years, male: 16,
female: 13) patients enrolled from July 2021 to January 2022 at the Affiliated Hospital
of Guizhou Medical University. In accordance with the Declaration of Helsinki 1975,

this study was approved by the Ethics Committees of the Affiliated Hospital of Guizhou
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Medical University (Ethics Approval N0.2023398). Consent forms have been signed

by all participants for the extra samples to be used for academic research.
Inclusion and Exclusion criteria

Inclusion criteria include (1) all patients except the NC group fulfilling the diagnostic
criteria of DM; (2) for NC and DM group, eGFR > 90 ml/min/1.73 m? without kidney
disease; (3) for DN group, with kidney disease and diabetic retinopathy, eGFR less than
90 ml/min/1.73 m?2,

Exclusion criteria include (1) other urinary diseases as hereditary kidney disease,
urinary tract infection, stones or obstruction; (2) systemic diseases, atherosclerosis,
severe hypertension, thrombotic microangiopathy, active or chronic infectious diseases;

(3) complication of serious diseases as well as a tumor; (4) pregnant woman.
Animals and procedures

We sourced male C57BL/6 mice (6-8 weeks old) bred under specific pathogen-free
(SPF) conditions from Charles River Co. Ltd (Beijing, China). All mice were randomly
grouped (n=3), and DM mice were injected with STZ (Solarbio, S8050) through the
intraperitoneal at a dose of 55 mg/kg/day, while NC mice received solvent injections
of the same volume. Experiments were conducted on mice with random blood glucose
> 16.7 mmol/L and positive urine glucose. At 20 and 28 weeks, mice were killed, then
kidney tissues, blood and urine were collected. All animal experiments were approved
by China’s National Health and Medical Research Council’s Code for the Care (No.
1800353).

Cell culture

Human renal proximal tubule epithelial cells (HK2) were cultured in Dulbecco’s
modified Eagle’s/F12 medium (DMEM/F12, 1:1) under standard conditions of 37°C
and 5% CO2. All mediums were supplemented with 10% fetal bovine serum (Gibco-
BRL) and 1% penicillin/streptomycin. HK2 cells were cultured with 30 mM D-glucose
(HG; Solarbio, G8150) mediums at different time point®’.
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METHOD DETAILS
Sample collection and proteomics assays

Serum samples from fasting blood were collected by centrifugation at 3500 rpm for 10
min at room temperature and stored at —80 °C until assayed. The cell debris was
removed by centrifuged at 12000 g for 10 min at 4 °C, then depleted of high-abundance
proteins using the Pierce™ Top 12 Abundant Protein Depletion Spin Columns Kit
(Thermo Fisher Scientific, 85164) according to the manufacturer’s instructions. Protein

concentration was determined using BCA kit (Beyotime, P0011).

An equivalent quantity of protein was utilized for enzymatic hydrolysis in every sample.
The volume was standardized, and subsequently, dithiothreitol (DTT) was introduced
to achieve a final concentration of 5 mM. This mixture was then subjected to reduction
at 56°C for a duration of 30 minutes. Subsequent to that, iodoacetamide (IAA) was
incorporated to attain a final concentration of 11 mM. This concoction was left to
incubate in darkness for a duration of 15 minutes at room temperature. Afterward, the
samples were carefully transferred into ultrafiltration tubes and subjected to
centrifugation at 12000 g for a span of 20 minutes, all at room temperature. Following
this centrifugation step, the samples underwent a thorough washing process, involving
three successive washes with 8M urea, followed by an additional three rounds of
washing with the replacement buffer. In the final step, trypsin was incorporated at a
proportion of 1:50 (trypsin to protein, m/m) to facilitate an overnight digestion process.
Following centrifugation at 12000 g for a duration of 10 minutes at room temperature
to recover the peptides, they were also recovered using ultrapure water once and then

mixed together.

For the examination of serum samples, a liquid chromatography-tandem mass
spectrometry (LC-MS/MS) approach was employed. This involved utilizing an
Orbitrap Exploris™ 480 mass spectrometer (Thermo Fisher Scientific) in tandem with
an EASY-nLC 1200 Ultra high-performance liquid phase system (UHPLC, Thermo

Fisher Scientific). The mass spectrometry was used to analyze the ionized peptides after

22



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

they had been separated by the UHPLC and introduced into the NSI ion source for
ionization. Mass spectrometry was set for primary scan range of 400-1200 m/z, at
60000 resolution; secondary scan range of 100 m/z, at 30000 resolution, without
TurboTMT. Data-dependent scanning (DDA) software was utilized in the data
collecting mode. Automatic gain control (AGC) was set to 75% to maximize the
effective use of the mass spectrum. The signal threshold was defined at 1E4 ions/s, with
a maximum injection time of 100ms. Additionally, a dynamic exclusion time of 30s
was applied to tandem mass spectrometry scans to ensure avoidance of duplicate
scanning for parent ions. The service of proteomics assays was provided by PTM

Biolabs, Inc.
Proteomics Data Analysis

Each protein was subjected to a two-sample t-test for each pairwise comparison across
the four groups. Absolute log? (fold change) > 1.5 or < 1/1.5 and a P-value < 0.05 were
used to designate differentially expressed (DE) proteins. Following log2 ratio
transformation, the relative protein expression was screened by a standard deviation
(SD) > 0.3. The 828 proteins remained, and Mfuzz clustering analysis was used to
separate proteins in the same cluster with similar expression trends into five clusters.
The most relevant peptides from the cluster2 group (n = 16) were selected after setting
unique peptides > 2, membership of cluster2 > 0.4, relative standard deviation (RSD) <
0.4, and a P-value < 0.05 among samples. The examination of the protein-protein
interaction (PPI) network involved the utilization of the Search Tool for the Retrieval
of Interacting Genes (STRING; http://string-db.org). Cytoscape software (version 3.9.1)
was used to construct a PP1 network from an interaction with a combined score of more
than 0.4. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis and Weighted Gene Co-Expression Network Analysis (WGCNA)
were performed using R software (version 4.2.1). For WGCNA, soft thresholding
power (B = 8; cut-off = 0.85) was chosen to increase the adjacency matrix, which was
converted into a topological overlap matrix. The minModuleSize was set to 50 to

hierarchically cluster the modules, and then DN related modules were merged. The
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relevance scores of DN were searched from the Genecards database

(https://www.genecards.org/).
Receiver operating characteristic (ROC) and correlation analysis

The diagnostic sensitivity and specificity of HMGBL1, along with the correlation
between HMGBJ1 and clinical diagnostic indicators, were examined using R software
(version 4.2.1). With R packages "pROC", receiver operator characteristic curves were
plotted for HMGB1 in DN and the area under the curve (AUC) estimated. AUC ranging
from 0.7 to 0.9 signified a well-fitted model, while an AUC exceeding 0.9 indicated a
highly fitting model.

Immunoblotting

Renal tissues were homogenised and sonicated using RIPA lysis buffer, supplemented
with 1mM phenylmethanesulfonyl fluoride (PMSF, Solarbio, P0100). Additionally,
cells were lysed using RIPA lysis buffer (ImM PMSF). After protein extraction, the
separation process was carried out on SDS-PAGE gels. Subsequently, these proteins
were transferred onto polyvinylidene difluoride (PVDF) membranes (Millipore,
ISEQ00010). After a 1 hour blocking step at room temperature using 5% (w/v) nonfat
milk, the membrane underwent an overnight incubation at 4 °C with antibodies against
E-cadherin (Proteintech, 20874-1-AP), Vimentin (Proteintech, 10366-1-AP), B-actin
(Proteintech, 66009-1-1g), and HMGB1 (Abcam, ab79823). This was followed by a
subsequent 1 hour incubation at room temperature with secondary antibodies (CST,
7074 and 7076;). Enhanced chemiluminescence reagents (Absin, abs920) and ImageJ
(National Institutes of Health, VV1.8.0) were used to visualize and analyze the protein

bands.
Histology analysis

For histological observation of renal morphology, the renal tissues were fixed in 4%
buffered paraformaldehyde, embedded in paraffin, and sliced at 3 millimeters. In
accordance with the protocol, hematoxylin and eosin staining (HE; Solarbio, G1220),
Masson trichrome staining (Solarbio, G1346), and periodic acid-schiff staining (PAS;
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Solarbio, G1281) were performed, and the stained sections were analyzed using a
computational color image analysis system (Leica Microscope, Germany DM2500).
Utilizing ImageJ software, the collagen tissue area was calculated to assess renal

fibrosis quantitatively.
Biochemical assays

Blood and urine were measured by automatic clinical chemistry analyzer

(ARCHITECT, ¢16000).
Immunofluorescent staining

The renal tissues section for immunofluorescent staining was treated in the same
manner as for histology analysis, and heat-mediated antigen retrieval with TrissEDTA
buffer pH 9.0 was carried out before staining was conducted. After fixing with 4%
buffered paraformaldehyde, 0.3% Triton X-100 was used to permeabilize the HK2 cells.
Rabbit anti-HMGB1 antibody (Abcam, ab79823); Mouse anti-B-actin antibody
(Proteintech, 66009-1-1g) and Lotus Tetragonolobus Lectin (LTL, Biotinylated; Vector
Laboratories, B-1325-2) were used for immunofluorescence staining, and images were
obtained under a positive fluorescence microscope (ZEISS, Axio Imager) and a

confocal microscopy (ZEISS, LMS 710).
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses of clinical parameters were exclusively conducted using SPSS 26.0
software. With GraphPad Prism 9.4, 16 candidate peptides and all verification
experiments were analyzed statistically. R software (version 4.2.1) was used to analyze
of all proteomics data analysis. A Shapiro-Wilk test was performed on the numerical
variables of this study for the purpose of testing normality. To compare normal
variables (mean = SD), we used an analysis of variance (ANOVA), while to compare
variables with non-normality (median, interquartile range), we used the Kruskal-Wallis
test. Using Fisher’s exact test, this study tested classification variables. The factors that

influenced the rise of HMGB1 were determined using multiple stepwise regressions.
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1 All statistical tests of verification experiments were performed by the two-tailed

2 Student’s t-test. P-value < 0.05 was defined statistically significant.
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Tablel. Demographic Characteristics of the Participants

NC DM DN-EM DN-L
Variable P

(N=6) (N=6) (N=6) (N=6)
Age

51.50+5.01 48.17+5.04 63.83+12.98° 63.50+8.31° 0.007~
(Years)
Gender

4/2 2/4 4/2 2/4 0.541#
(Female /Male)
eGFR

99.57+5.68 102.06+7.43 63.67+£15.04% 18.89+9.382be <0.001~
(ml/min/1.73m2)
Glu (mmol/L) 4.47 (4.14-4.72) 7.59 (6.02-10.08)* 6.68 (5.99-13.66)* 8.6 (5.35-11.58)* 0.010*
BUN (mmol/L) 5.12+1.45 5.00+1.37 6.2942.26 10.06%1.76¢ <0.001~
SCr (umol/L) 57.5 (47.25-63.75) 54.0 (48.00-60.75) 67 (62.00-116.25) 180 (177.25-396.25) % 0.001*
BUN/SCr 0.085 (0.075-0.115) 0.09 (0.068-0.118) 0.09 (0.083-0.090) 0.04 (0.028-0.055) * 0.009*
Cys-C (mg/L) 0.85 (0.79-0.89) 0.84 (0.77-0.89) 1.16 (1.05-2.07) 3.27 (2.24-5.42)%® <0.001*
UA (umol/L) 276.5 (216.75-313.50)  250.0 (228.00-411.75) 335 (235.50-359.50) 414 (289.00-429.75) 0.283*

eGFR: estimated glomerular filtration rate; Glu: glucose; BUN: blood urea nitrogen; SCr: serum creatinine; BUN/ Scr; blood urea

uitrogen to serum creatinine ratio; Cys-C: cystatin ¢; UA: uric acid; ~: Analysis of variance (ANOVA); #: Fisher’s Exact Test; *: Kruskal-

Wallis Test; P < 0.05 vs NC group; ® P < 0.05 vs DM group; ¢ P < 0.05 vs DNEM group.



Table2. The basic information of shared proteins between MEblue and Cluster2

Protein Subcellular locations from Relevance scores
Protein description Gene name
accession UniProtKB/Swiss-Prot from Genecards
Nucleus. Chromosome. Cytoplasm. Secreted.
Cell membrane. Peripheral membrane
High mobility group ) )
Q5T7C4 Bl HMGBI1 protein. Extracellular side. Endosome. 10.5875282287598
protein . ) . .
Endoplasmic reticulum-Golgi intermediate
compartment. Endoplasmic reticulum.
Cell membrane. Single-pass type | membrane
HOYCV9 CD44 antigen CD44 ) o ) ) 6.28472328186035
protein. Cell projection, microvillus.
BIAHL2/ Secreted, extracellular space, extracellular
Fibulin-1 FBLNI1 2.0302460193634
P23142 matrix.
Receptor-type tyrosine- Membrane. Single-pass type I membrane
P23470 plor-typety PTPRG 2 None
protein phosphatase gamma protein.
Secreted, extracellular space, extracellular
Q6UY 14 ADAMTS-like protein 4 ADAMTSL4 None

matrix.
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Highlights
Potential biomarkers increased along with diabetic nephropathy progression

HMGB1 as an acceptable biomarker for the early monitoring of diabetic

nephropathy

HMGB1 was elevated under high glucose conditions both in cells and animals



KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
Anti-HMGB1 Abcam ab79823;
RRID:AB 1603373
Anti-E-cadherin Proteintech 20874-1-AP;
RRID:AB 10697811
Anti-Vimentin Proteintech 10366-1-AP;
RRID:AB 2273020
Anti-B-actin Proteintech 66009-1-Ig;
RRID:AB 2687938
Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Technology 7074;
RRID:AB 2099233
Anti-mouse 1gG, HRP-linked Antibody Cell Signaling Technology 7076;
RRID:AB 330924
Lotus tetragonolobus lectin (LTL) Vector Laboratories B-1325;
RRID:AB 2336558
FITC Goat Anti-Rabbit IgG (H+L) Antibody | ApexBio Technology K1203
Cy3 Goat Anti-Mouse IgG (H+L) Antibody | ApexBio Technology K1207
Cy3 Goat Anti-Rabbit IgG (H+L) Antibody | ApexBio Technology K1209

Biological samples

Serum samples from patients Affiliated Hospital of This paper
Guizhou Medical University

Chemicals, peptides, and recombinant proteins

Streptozotocin (STZ) Solarbio S8050
Dulbecco’s modified Eagle’s/F12 medium Gibco C11330500BT
Fetal bovine serum Gibco 2497736
D-glucose Solarbio G8150
phenylmethanesulfonyl fluoride (PMSF) Solarbio P0100
Enhanced chemiluminescence reagents Absin abs920

Critical commercial assays

Pierce™ Top 12 Abundant Protein Depletion | Thermo Fisher scientific 85164

Spin Columns Kit

BCA Protein Assay Kit Beyotime P0011

Hematoxylin and eosin staining Kit Solarbio G1220
Masson trichrome staining Kit Solarbio G1346
Periodic acid-schiff staining Kit Solarbio G1281

Deposited data

Mass spectrometry data ProteomeXchange PXDO047872

Experimental models: Cell lines




HK-2 cells

Procell Life
Science&Technology

Cat# CL-0109;
RRID:CVCL 0302

Experimental models: Organisms/strains

C57BL/6

Charles River

RRID:MGI:2159769

Software and algorithms

STRING

N/A

http://string-db.org
RRID:SCR 005223

Cytoscape (version 3.9.1)

Open source

https://cytoscape.org
RRID:SCR 003032

GraphPad Prism

GraphPad Software

RRID:SCR_002798

Imagel

National Institutes of Health

RRID:SCR_003070

R (version 4.2.1)

R Project

https://www.r-

project.org

SPSS 26.0 IBM RRID:SCR_002865
Other
polyvinylidene difluoride (PVDF) Millipore ISEQ00010

membranes




